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We have known for almost three decades that the steps in a computer that 
require a minimal energy expenditure, that cannot be avoided by any means, are 
those that discard information. For more than half that period we have known 
that such steps are not essential; computation can be carried out through a 
sequence of logical 1:1 mappings. Computation, therefore, can be carried out 
with arbitrarily little dissipation per step, if done sufficiently slowly. Much more 
recently it has been emphasized that measurement and communication are 
similar to computation; it is only the information-discarding steps that have a 
lower bound on the dissipation. Such steps are not required in communication. 
In measurement, as shown by Bennett, they only become essential when we 
reset the meter for its next (or first) use. This paper is not a detailed exposition 
of all this, but only an annotated guide to the existing literature. 
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1. I N T R O D U C T I O N  

I will address  e n e r g y  d i s s ipa t i on  r e q u i r e m e n t s  in three  re la ted  bu t  dis-  

t i ngu i shab le  areas:  (1) m e a s u r e m e n t ,  (2) c o m m u n i c a t i o n ,  and  (3) c o m -  

pu ta t ion .  T h e  d i s t i nc t ion  b e t w e e n  c o m m u n i c a t i o n  a n d  c o m p u t a t i o n ,  for  

example ,  is m a d e  c lear  in Fig.  1. In  a c o m m u n i c a t i o n s  l ink,  we w a n t  to get  

ou t  w h a t  we h a v e  pu t  in, c h a n g e d  one  hopes ,  as l i t t le  as poss ib le  in the  

t r a n s m i s s i o n  process .  In  con t r a s t ,  the  e l e m e n t a r y  logic  step in a c o m p u t e r  

i nvokes  a n o n l i n e a r  i n t e r a c t i o n  b e t w e e n  two  or  m o r e  b i n a r y  inputs .  

I a m  dea l i ng  wi th  three  fields, all  of  wh ich  h a v e  an  ex tens ive  l i te ra ture .  

I c a n n o t  h o p e  to discuss  even  one  of  these  a reas  in a def in i t ive  m a n n e r  in 
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Logic step in (a) utilizes a nonlinear interaction between p and q. The transmission 
channel in (b), it is hoped, reproduces its input at the output. 

this paper, which is closer to an annotated bibliography than to a complete 
exposition. My intent, instead, is to emphasize the recent application of 
what has been learned about computation to the two other areas. These 
other areas are much older and can be dated to Maxwell's demon (1) in the 
case of the measurement problem and to Claude Shannon (2) for the com- 
munications channel. Thus, if we newcomers in the computational area tell 
the investigators in the two older areas that they had not gotten it quite 
right, we are likely to be making controversial assertions. I cannot expect 
to convince all readers immediately, but hope that our notions will be met 
with an open mind and a willingness to give them serious consideration. 

The three areas listed have been burdened with excessively simple 
attempts to estimate minimal energy dissipation. These casual estimates 
have been widely accepted, without a demonstration that they were indeed 
minimal, or without adequate concern whether the arguments for minimal 
dissipation were applicable to all possible methods for carrying on the 
desired operation. For  an entertaining and provocative assessment of this 
problem see ref. 3. I give a simple example. The quantum mechanical uncer- 
tainty principle, AE~t~h ,  has frequently been invoked casually ~4) to 
suggest that fast switching in computers requires an energy dissipation 
defined by the uncertainty principle. There are also much more detailed 
studies with a similar thrust. (5) But the uncertainty principle does not refer 
to energy dissipation, it refers to an energy spread. For this and other 
reasons (6) the uncertainty principle argument is invalid. Nevertheless, an 
incorrect argument can, conceivably, yield a correct result, and can only be 
g iven  a definitive rebuttal through a counterexample. Such counter- 
examples, showing that conservative Hamiltonian systems can carry out 
computation, have been developed by Benioff, Feynman, Zurek, Deutsch, 
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Peres, and others. For a more detailed discussion and critical evaluation of 
this field and an entry to the citation trail, see ref. 7. The most common 
error, however, characteristic to a varying extent of all three fields, is 
classical rather than quantum mechanical. Systems at a temperature T have 
thermal energies kT, per degree of freedom. It is then natural, but not 
necessarily correct, to assume that execution of a useful function requires 
energy comparable to or larger than that, and that this energy has to be 
dissipated. 

2. C O M P U T A T I O N  

This subject is best summarized in a somewhat historical fashion. The 
1950s was a period for speculation about limits, and these speculations 
were not much more than dimensional analysis. Brillouin's well-known 
book, (8) for example, despite its chapter on "The Problem of Computing," 
contains no references to the actual logic processes involved in a computer, 
e.g., to a logical "and" or a logical "or," and contains no references to a 
total working computer system, such as a Turing machine or a cellular 
automaton. A more careful approach commenced with ref. 9. There it was 
argued that the operations in a computer which have an unavoidable 
minimal energy dissipation were those which discarded information, i.e., 
those which did not represent a logical 1:1 mapping. Note that throughout 
the present discussion, unless otherwise specified, I will be considering 
classical systems with frictional forces proportional to velocity, as found in 
electricity and hydrodynamics. I will also assume that these systems exhibit 
thermal equilibrium noise. (Note, however, that some of the detailed con- 
siderations in the literature are stronger than that, and allow for a greater 
variety of noise sources.) Thus, if computation can be made equivalent to 
motion along a path, with each program and its initial data determining a 
unique and identifiable path, then the frictional forces and the resulting 
energy dissipation can be made arbitrarily small, by choosing a sufficiently 
low computational velocity. This is like the motion of an electron through 
a solid. Over a short period, in the presence of noise, the motion is dif- 
fusive. Over a long period, however, an arbitrarily small force is adequate 
to produce a predictable drift velocity. On the other hand, if we have paths 
that merge, representing information loss, then the phase space before the 
merging event is larger than after, and the system in equilibrium will prefer 
the unmerged state with its larger entropy. A minimal force and dissipation 
are required to be certain that the system will pass the place where the 
tracks merge. It was the brilliant perception of Bennett ~~ that, in fact, 
general-purpose computation can be carried out by systems which are 1:1 
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at every step, and do not need merging of tracks. Wheeler and Zurek (1~ 
have labeled this perception as "epoch-making." 

The notion of reversible computation is still not known to, or accepted 
by, all those who comment on the subject. (~2) A sufficient variety of 
investigators, however, with differing backgrounds and perspective have 
analyzed reversible computation to give the notion some credence. It is 
inadequate for the skeptic to demolish only one of the several and com- 
plementary viewpoints. 

3. M O D U L A T E D  POTENTIAL WELL 

I allude here, briefly, to some aspects of one of the detailed 
embodiments for reversible computation. This utilizes particles in time- 
modulated potential wells shown in Fig. 2. The wells are assumed to be 
heavily damped; the velocity of the particles is proportional to the force, 
and inertial effects are unimportant. Different wells will be exposed to one 
of several different phases for the time modulation. Particles in a deeply 
bistable state locked into a "0" (left-hand well) or "1" (right-hand well) will 
be coupled via springs as shown in Fig. 3 to wells which are just under- 
going the transition from the monostable state to the bistable state. The 
particles in wells going through the bifurcation transition will be pushed 
one way or the other according to the majority vote of the odd number of 
wells influencing them. As shown in refs. 13, all logic functions required in 
general-purpose computation can be executed via such "majority logic." 

V 
A 

Fig. 2. Potential changing with time. Starts at A with a single minimum and ends up at F in 
a deeply bistable state, and then returns to A. Relative vertical displacement of curves is 
unimportant, and is selected for clarity. 
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Fig. 3. Three wells in deeply bstable state, on the left, coupled to the one about  to undergo 
transtion to bistability. The bot tom well on the left is a "lost" vote. 

The scheme we are describing here was originally proposed in refs. I3 
as a method of using parametrically excited nonlinear circuits to do com- 
putation. It was adapted in ref. 14 to the mechanical potential wells 
invoked here, and extended to a proposal involving Josephson junctions, 
and permitting reversible computation, by Likharev/15) These schemes 
were reviewed in ref. 16. If the wells are modulated slowly enough, then the 
particles in the wells will remain close to the Boltzmann distribution. The 
well forces in the deeply bistable state are kept large compared to the forces 
exerted by the coupling devices. These spring forces, in turn, are selected so 
as to bias the Boltzmann distribution enough to give a high probability for 
the particle being influenced ending up in the desired state. Thus, for any 
given choice of potentials and coupling devices, there will be a small 
residual error probability for ending up on the undesired side of the barrier. 
But by suitable design choices, this error can be made as small as desired. 
Note that I have referred to "springs," and these are shown in the figures. 
The word "spring" is intended as an abbreviation for a device that couples 
the relative displacement from the center of one well to the displacement 
from the center of the other well. The interaction of the information- 
bearing particle with its time-dependent potential is not a source of 
dissipation. Dissipation occurs as a result of the motion of the information- 
bearing particle against viscous forces. This source of dissipation can be 
made as small as desired by a sufficiently slow motion. An additional loss 
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occurs if we need a many-to-one mapping, and this cannot be minimized 
by slow execution. Such information loss can occur, for example, if three 
stages, as shown in Fig. 3, influence one subsequent one. After the left-hand 
wells in Fig. 3 are restored to their monostable state, information about the 
existence and identity of a dissident well is no longer available. Likharev ~15) 
recognized that such steps could easily be avoided. They will, in any case, 
not be needed in the subsequent examples. 

Consider Fig. 4, in which information from the left well on the left side 
of the diagram is transferred to the well on the right side of the diagram. 
One can consider this as an example of a simple measurement: Which 
left-hand well is occupied? The information transfer process from one well 
to the next does not require a minimal dissipation. Does that mean that the 
total measurement cycle is without any minimal dissipation? The word 
measurement is, of course, ambiguous. There are many sophisticated 
theoretical discussions of measurement (17) which do not define the object of 
their discussion and do not say how to differentiate between a 
measurement and a dead horse. A typical ingredient, however, of a 
measurement is the resetting of the meter to a standardized state after it is 
decoupled from the system being measured. This is destruction of infor- 
mation, and does require minimal dissipation. This dissipation is enough to 
save the second law, in the operation of Maxwell's demon. (18) We do not 
need to look for additional dissipation in the information transfer step, 
from the system to the meter. (~8) Many of the analyses of Maxwell's demon, 
however, did not understand the need for dissipation in the resetting step, 
and looked for it in the information transfer step. They found it, of course, 
but did not ask themselves whether their procedures were really minimally 
dissipative. This erroneous view was so deeply imbedded that the 
generation of this view, perceived as a correct view, even became a subject 
in the history of science. (19) For a typical uncritical scientific (rather than 
historical) discussion see ref. 20. For a more detailed discussion of 
measurement, see refs. 18 and 21. 

Fig. 4. Particle in deeply bistable potential well on the left, coupled to a particle on the right. 
The particle on the right is in a well about to undergo transition to bistability. The spring is 
symbolic; it is the relative displacements from the center of the respective potentials which are 
coupled. 
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Now let us, in Fig. 4, after the information transfer, restore the 
left-hand well to the monostable state of Fig. 2. This is not erasure; the 
information originally in the left-hand well still exists in the right-hand 
well. If we had restored the left-hand well to a monostable state without 
coupling to the right-hand well, then the information in the left-hand well 
would indeed have been destroyed and this would be associated with a 
minimal dissipation of kTloge 2. This dissipation, of kT loge 2, is associated 
with the fact that both the left-hand well and the right-hand well at the 
bottom of Fig. 2 are mapped into the same central final well. The phase 
space associated with the twofold choice of wells has to appear elsewhere, 
i.e., as a heating up of the irrelevant degrees of freedom. (The exact result 
kTloge2 assumes equal likelihood of the "0" and "1" states.) But if we 
restore the left-hand well in the presence of the biasing force exerted by the 
right-hand well, then no irreversible event (beyond that required by the 
lateral motion of the particle, which can be minimized to any desired 
extent) takes place. After all, we can go back again to the bistable state for 
the well on the left of Fig. 4, and thus recover our earlier state. 

After restoring the well on the left of Fig. 4 to its monostable state, 
and with our bit left in the well on the right-hand side of Fig. 4, we have 
moved the bit from one well to the next. One can think of these two wells 
as part of a long chain, and continue to move the bit to the right. Clearly, 
this is communication, and in contrast to the prevailing notions in that 
field, ~22) done without having to spend kTloge 2 per transmitted bit. 

The prevailing notions, requiring a dissipation of kTlog e 2 per trans- 
mitted bit, are based on ref. 2, which states (and I am here paraphrasing a 
few sentences from ref. 23): "An important special case occurs when the 
noise is added to the signal and is independent of it (in the probability 
sense)." In that case, Shannon finds 

C= Wlog2[N-~(P + N)] (1) 

C is the channel capacity, W the bandwith, P the average received power, 
and N the average noise power. Thermal noise, for a classical transmission 
line with additiveequilibrium noise, is given by N=kTW.  Equation (1) 
yields a maximum for C/P at small P given by C =  P/(kTloge 2). Thus, 
kTloge 2 energy per bit is required, though it is not clear that this has to 
be dissipated. Equation (1) has an obvious plausibility. N determines the 
distance between distinguishable signals. The larger the N, the fewer the 
number of possible distinguishable messages. But communication does not 
need wave propagation. Mail is communication. Communication, further- 
more, need not use degrees of freedom in which the effects of noise are 
added linearly to that of the signal in the transmission process and in the 
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detection process used at the receiving end. There is an obvious advantage 
to the use of states of local stability to denote information, in contrast to 
the use of states in which noise causes unhindered diffusion from one state 
to another. This intuitively apparent distinction was discussed analytically 
in ref. 9. Furthermore, even if channel capacity expressions describe the 
energy required in the message, does the energy have to be dissipated? 

There are a number of other examples which demonstrate that com- 
munication can be done with arbitrarily small dissipation per bit(6'21'23); 
I will not repeat them here. 

4. M E A S U R E M E N T  A N D  C O M M U N I C A T I O N  

In the preceding section, via modulated potential devices, I have 
argued Bennett's point that measurement requires unavoidable energy 
dissipation only when information is destroyed, i.e., in the meter-resetting 
step. I also argued that information transmission requires no minimal 
energy dissipation. This conclusion was implicit in earlier discussions of the 
computational process, e.g., in ref. 14, but has now been made totally 
explicit. All of our three areas of concern, computation, measurement, and 
communication, can be lumped and characterized by the assertion that 
unavoidable minimal energy dissipation is required only when information 
is discarded. 

5. S U P P L E M E N T A R Y  R E M A R K S  

I allude here briefly to two further notions not discussed in detail in 
the preceding account. We have learned that supposed computer 
limitations related to kT, and related to the uncertainty principle, (6'2~) can 
be circumvented. There are other limitations, however, related to such 
cosmological questions as: How many degrees of freedom in the universe 
can we really couple together into an effective computing structure? If that 
is limited, then continuum mathematics with its need for unlimited sequen- 
ces of operations is not executable, and is therefore not a satisfactory basis 
for physical laws. This theme was introduced in ref. 24 and revisited on a 
number of later occasions, e.g., ref. 7. 

A second theme not taken up in this discussion relates to the ultimate 
sources of friction, irreversibility, and noise. Why do we have friction for 
the tire on the road, but not for the electron in the benzene molecule? 
I believe that this can, in turn, be tied to the invalidity of continuum 
mathematics to which I have just alluded. This admittedly very speculative 
and exploratory suggestion has been presented in refs. 21 and 25. 
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